SSB Boilers have Stainless Steel all wetted metal parts. SSB boilers shall be operated using only deionized water, having a maximum conductance of 1 microSiemen per cm (1 µS/cm) [minimum specific resistivity of 1 megohm per cm (1MΩ/cm)].

PRODUCTS COVERED BY THIS MANUAL:

<table>
<thead>
<tr>
<th>Series</th>
<th>KW Range</th>
<th>Steam Rate*</th>
<th>BHP</th>
<th>Design Pres.</th>
<th>Max Work Pres.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSB</td>
<td>12-180</td>
<td>36-542 lbs/hr</td>
<td>1.2-18.4</td>
<td>0-100 psig</td>
<td>85 psig</td>
</tr>
</tbody>
</table>

Steam Rate- Steam @ 212 F with 50 F feed water
Model SSB

Table: Dimensional Information & Component Identification

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>ITEM</th>
<th>SSB 12-18</th>
<th>SSB 24-72</th>
<th>SSB 100</th>
<th>SSB 135-180</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Steam Outlet</td>
<td>6 3/4"</td>
<td>10"</td>
<td>8 1/4"</td>
<td>9"</td>
</tr>
<tr>
<td>B</td>
<td>Steam Outlet</td>
<td>10 7/8"</td>
<td>17"</td>
<td>17 1/2"</td>
<td>18 1/4"</td>
</tr>
<tr>
<td>C</td>
<td>M/M Drain Valve</td>
<td>5"</td>
<td>12"</td>
<td>17"</td>
<td>16 3/4"</td>
</tr>
<tr>
<td>D</td>
<td>M/M Drain Valve</td>
<td>6 1/4"</td>
<td>6"</td>
<td>6 1/4"</td>
<td>6 1/4"</td>
</tr>
<tr>
<td>E</td>
<td>Check Valve</td>
<td>14"</td>
<td>9"</td>
<td>17"</td>
<td>16 3/4"</td>
</tr>
<tr>
<td>F</td>
<td>PV Drain Valve</td>
<td>2 1/4"</td>
<td>2 1/4"</td>
<td>2 3/4"</td>
<td>2 1/4"</td>
</tr>
<tr>
<td>G</td>
<td>PV Drain Valve</td>
<td>6 1/4"</td>
<td>9 1/4"</td>
<td>7 3/4"</td>
<td>9 1/4"</td>
</tr>
<tr>
<td>J</td>
<td>Clearance</td>
<td>3 3/4"</td>
<td>3 3/4"</td>
<td>4"</td>
<td>4"</td>
</tr>
<tr>
<td>K</td>
<td>Check Valve</td>
<td>2 1/2"</td>
<td>2 1/2"</td>
<td>3"</td>
<td>3"</td>
</tr>
<tr>
<td>L</td>
<td>Door Width</td>
<td>8 3/4"</td>
<td>14"</td>
<td>12 3/4"</td>
<td>14 1/4"</td>
</tr>
</tbody>
</table>

Add 6 inches to the width when supplied with Automatic Blowdown

Steam Outlet is 3" NPT on 15 PSI trimmed SSB-80-180.

NOTE: Recommended clearance is 36 inches all around for servicing.

Model SSB

<table>
<thead>
<tr>
<th>MODEL</th>
<th>H</th>
<th>W*</th>
<th>L</th>
<th>Water Inlet</th>
<th>Steam Outlet</th>
<th>Drain Valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSB 12–18</td>
<td>37"</td>
<td>22"</td>
<td>32"</td>
<td>1/2"NPT</td>
<td>1/2"NPT</td>
<td>1"</td>
</tr>
<tr>
<td>SSB 24–72</td>
<td>47"</td>
<td>27"</td>
<td>36"</td>
<td>1/2"NPT</td>
<td>1" NPT</td>
<td>1"</td>
</tr>
<tr>
<td>SSB 80–100</td>
<td>63"</td>
<td>29"</td>
<td>36"</td>
<td>1/2"NPT</td>
<td>1 1/2"NPT**</td>
<td>1"</td>
</tr>
<tr>
<td>SSB 135–180</td>
<td>63"</td>
<td>30"</td>
<td>38"</td>
<td>1/2"NPT**</td>
<td>2" NPT**</td>
<td>1"</td>
</tr>
</tbody>
</table>
Allow 24" all around for servicing.

CLEARANCE FROM COMBUSTIBLE SURFACES

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1"</td>
<td>Clearance above top of boiler</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>Clearance from Front of boiler. Prefix "C" to numeral indicates acceptability for closet or alcove installations; prefix acceptability for alcove installations but not for closet installations.</td>
</tr>
<tr>
<td>D</td>
<td>1"</td>
<td>Clearance from back of boiler.</td>
</tr>
<tr>
<td>EL</td>
<td>1"</td>
<td>Clearance from left side of boiler.</td>
</tr>
<tr>
<td>ER</td>
<td>16"</td>
<td>Clearance from right side of boiler.</td>
</tr>
<tr>
<td>F</td>
<td>C</td>
<td>Indicates type of flooring: "NC" for non-combustible; "C" for combustible.</td>
</tr>
<tr>
<td>G</td>
<td>-</td>
<td>Total minimum free area in square inches of close ventilating openings.</td>
</tr>
</tbody>
</table>
Wiring Diagram Power Circuit

THREE PHASE
MAIN POWER
SUPPLY

TERMINAL POWER BLOCK
(see note 1)

L1 — — — — — — —
L2 — — — — — — —
L3 — — — — — — —
G — — — — — — —

PILOT
LIGHT

480V
120V

TRANSFORMER
(optional)

POWER FUSES
(see Note 2)

TO CONTROL
CIRCUIT

CONTACTORS

HEATING
ELEMENTS

H1
H2
H3
H4
H5
H6
H7
H8

FIELD WIRING
FACTORY WIRING

SINGLE PHASE
MAIN POWER SUPPLY

L1 L2 G

TB 1

FB1 FB2 FB3 FB4

C1 C2 C3 C4
Installation

REFER TO NATIONAL AND ALL APPLICABLE LOCAL CODES FOR SPECIFIC INSTALLATION REQUIREMENTS.

1. The boiler should be mounted on a solid, level foundation.
2. The boiler should be located with suitable clearances, refer to page 2 and 3 and Code requirements.

Piping

ALL PIPING SHOULD BE INSTALLED BY A QUALIFIED LICENSED PLUMBER IN ACCORDANCE WITH NATIONAL AND LOCAL CODES.

1. When water feed is other than pump type the water supply pressure must be 10 psig greater than boiler operating pressure to assure water supply maintains proper water level in the boiler. Insufficient water levels can result in improper boiler operation. (Keep feed water valves open at all times during normal operation.)
2. If pump and boiler are plumbed within 30 feet (pipe length) a minimum of 2 check valves are required to avoid damage to pump.
3. Connect steam line with customer supplied outlet valve to boiler steam outlet.
4. Provide for boiler drain connection, a daily blowdown is required. A "Blowdown Separator Tank" may be necessary, check with local code.
5. Safety valve shall be plumbed according to local code.
6. SSB Boilers have Stainless Steel all wetted metal parts. SSB boilers shall be operated using only deionized water, having a maximum conductance of 1 microSiemen per cm (1 µS/cm) [minimum specific resistivity of 1 megohm per cm (1MΩ/cm)].

NOTE: The safety valve shall not be plumbed with a line sized less than the outlet size of the safety valve.

Wiring

ALL ELECTRICAL WIRING MUST BE PERFORMED BY A QUALIFIED ELECTRICIAN IN ACCORDANCE WITH NATIONAL AND LOCAL ELECTRICAL CODES.

CAUTION Assure that the power voltage and phase being supplied to the boiler matches the power voltage and phase of the boiler. Connecting incorrect power supply can damage boiler components or cause improper boiler operation. If the boiler power requirements do not match the power to be supplied to the boiler the boiler must be returned to the factory for conversion. Boilers cannot be field converted. All boilers are pre-wired and tested prior to shipment.

1. Ground boiler according to National Electric Code requirements to avoid shock.
2. Power wiring to boiler should be in accordance with National and Local Electrical Code requirements following wiring diagram supplied. Use proper size wire. Wire size is specified adjacent to field wiring terminals. This label states the wire size [AWG or MCM], minimum temperature rating (90 C) and conductor material (copper only). Deviation from these requirements may result in improper or unsafe boiler operation.
3. A disconnect switch employing circuit breakers or fuses should be installed between the main power source and the boiler. This disconnect switch should be located near the boiler and clearly marked for easy access and identification should the boiler need to be turned off due to an emergency.
4. Boiler control circuit is 120 Volt*. Unless boiler has an optional step down transformer, a separate 120 Volt power feed wiring is required to be connected to the control circuit terminal block. A 15 Amp circuit is required for all boilers. If a 3/4 HP feed water motor and pump assembly is connected to the boiler, then a 20 Amp circuit is required.
5. If a separate control circuit is used, it should be connected to the control circuit terminal block.
6. Remote mounted water feed systems (i.e. motor and pump) should be connected to the junction box provided on the outside of the boiler jacket.
7. With main power off, make sure all wiring terminations are tight to avoid arcing, carbonizing or overheating of contacts.

CAUTION Boilers are susceptible to lightning damage due to water line connections. An industrial type lightning/surge protector should be installed according to the manufacturer's recommendation at the service entrance. Consult your contractor or electrical dealer.

WARNING Substitution of components or modification of wiring system voids the warranty and may lead to dangerous operating conditions.

*220V for 380V and 415V boilers.
Pressure Controls, Operation and Testing

NOTE: All boilers are provided with one high limit pressure control and at least one operating pressure control.

1. The high limit pressure control is equipped with a manual reset feature. There is no subtractive differential scale with this type of control

2. All pressure controls are equipped with an adjusting screw, allowing for setting of desired operational and high limit pressures. To reduce pressure setting, turn adjusting screw in direction that allows indicator to point to a lower pressure setting on the scale. To increase pressure setting turn adjusting screw in direction that allows indicator to point to a higher pressure on the scale

NOTE: It is recommended that the high limit control be set 10psig above the desired normal operating pressure.

3. Operating pressure controls, have a separate differential scale. Differential indicates pressure below the main operating maximum pressure, the pressure control will re-set. The differential set point is adjusted in the same manner by turning the adjusting screw in the desired direction to increase or decrease the differential pressure value.

4. Operating pressure control check: Close steam outlet valve [supplied by customer] and adjust operating pressure control to 20psig and the differential to 10psig. Set the high limit pressure control to 30psig. Switch boiler on to allow steam pressure to build-up. Pressure gauge reading will increase and the operating pressure control will de-energize the contactor(s) when the pressure gauge indicates 20psig. Open steam outlet valve to bleed off pressure. When the pressure gauge reading decreases below 10psig (differential) the operating pressure control will re-energize the contactor(s).

5. High limit pressure control check: FOR TEST PURPOSES ONLY! Set the high limit pressure control 10psig lower than the operating pressure control. Close the steam outlet valve and switch the boiler on to allow boiler to build pressure. When the pressure gauge indicates the pressure at which the high limit pressure control is set, the high limit pressure control re-set button will pop-up and the control will de-energize the contactor(s). Open the steam outlet valve to bleed off pressure. The contactor(s) should not re-energize on pressure drop. The contactor(s) should only re-energize when the pressure has dropped and the high limit pressure control reset button is depressed.

Pressure Controls, Operation and Testing

NOTE: All boilers are provided with one high limit pressure control and at least one operating pressure control.

1. All valves for incoming water supply are to be fully opened. Main disconnect switch is to be in the "on" position. Boiler main switch is to be in the "on" position. Since boiler will be empty the pump or solenoid will be energized allowing the boiler to fill with water. Control will automatically fill boiler to proper operating water level and the pump/solenoid will be de-energized. Contactors will then energize, applying voltage to the heating elements.

2. Pump switch operation – at this point water should be visible approximately half way up the sight glass. Slowly open the drain valve located at the bottom of the boiler. Water level in the sight glass will begin to drop, allowing the low water cut off/pump control to energize the feed water system. Close valve for proper operation.

3. Low water cutout switch performance – open the drain valve completely. Maintain this condition until water level falls within the gauge glass enough to cause the low water cutout switch to de-energize the heating elements. All of the contactors will be in a de-energized or open state at this time. Close the drain valve, water feed system will automatically refill the boiler and the contactors will re-energize.

Boilers equipped with an auxiliary low water cut-off control with a manual re-set button (required as mandatory equipment is some states): once the correct operating water level has been reached, it will be necessary to depress the reset button in order for the contactors to re-energize.

NOTE: For boilers equipped with an automatic blowdown system:

- **FOR TEST 1** - the blowdown time clock must be in the “run” mode before the boiler will automatically fill.
- **FOR TEST 2 AND 3** - in order for the drain valve to open the blowdown clock must be in the “off” mode. (See blowdown time clock insert) The automatic blowdown indicator light will be on when the valve is open. This light will remain on for the duration of the blowdown cycle (a few seconds). It may be necessary to cycle the time clock from the “run” to “off” mode several times.

4. Operating pressure control check: Close steam outlet valve [supplied by customer] and adjust operating pressure control to 20psig and the differential to 10psig. Set the high limit pressure control to 30psig. Switch boiler on to allow steam pressure to build-up. Pressure gauge reading will increase and the operating pressure control will de-energize the contactor(s) when the pressure gauge indicates 20psig. Open steam outlet valve to bleed off pressure. When the pressure gauge reading decreases below 10psig (differential) the operating pressure control will re-energize the contactor(s).

5. High limit pressure control check: FOR TEST PURPOSES ONLY! Set the high limit pressure control 10psig lower than the operating pressure control. Close the steam outlet valve and switch the boiler on to allow boiler to build pressure. When the pressure gauge indicates the pressure at which the high limit pressure control is set, the high limit pressure control re-set button will pop-up and the control will de-energize the contactor(s). Open the steam outlet valve to bleed off pressure. The contactor(s) should not re-energize on pressure drop. The contactor(s) should only re-energize when the pressure has dropped and the high limit pressure control reset button is depressed.
Operation

\[\text{CAUTION} \] With main disconnect “OFF” tighten all electrical connections before energizing boiler to prevent arcing, carbonizing of contact and/or overheating.

1. Set the desired operating pressure and differential pressure on the operating pressure control.
2. Set the high limit pressure control. (Recommended to be 10 psig above the operating pressure setting.)
3. Turn on water supply.
4. Turn main disconnect switch on.
5. Turn boiler control switch on. The water feed will begin and continue until the water level reaches half way up the gauge glass. The water feed will automatically shut off and the contactor(s) will energize.
6. Boiler steam pressure will gradually increase to the operating pressure control set point, at which time the contactor(s) will de-energize.
7. With steam demand, the boiler steam pressure will decrease. When the boiler pressure has dropped below the operating pressure control differential set amount, the contactor(s) will re-energize.
8. The boiler is equipped with float type liquid level controls employing micro switches. They are extremely sensitive and reliable and will maintain the proper water level within the boiler pressure vessel automatically during boiler operation.
9. The boiler should be blown down daily. (See blowdown instructions.)

Blowdown

A daily blowdown is an essential part of boiler operation. It is the best and most important part of preventative maintenance you can give your boiler and will add years of life to the unit. Make sure a blowdown schedule is established and followed regularly.

MANUAL BLOWDOWN INSTRUCTIONS

1. At the end of the working day, while boiler is still operating, turn boiler main switch to the “OFF” position, close water supply valve and open disconnect switch.
2. If blow down valve is plumbed into a blowdown tank, the boiler can be discharged at operating pressure.
3. If the blowdown valve is not plumbed into a blowdown tank, consult with local plumbing codes regarding boiler discharge.
4. When discharge is complete and boiler is drained, close the blowdown valve, open the water supply valve, turn boiler main switch to “ON” position and close disconnect switch.
5. When refilling is complete, turn off the boiler unless further operation is needed.
6. If boiler is equipped with a "Manual Re-set Auxiliary Low Water Cut-off" (as required in some states) the re-set button must be pushed before the boiler will begin developing steam. Do not push re-set button until the boiler has refilled with water.
7. Boiler steam pressure will gradually increase to the operating pressure control set point, at which time the contactor(s) will de-energize.
8. With steam demand, the boiler steam pressure will decrease. When the boiler pressure has dropped below the operating pressure control differential set amount, the contactor(s) will re-energize.
9. The boiler should be blown down daily. (See blowdown instructions.)

AUTOMATIC BLOWDOWN INSTRUCTIONS

(PN ES81600) 1” NPT, Starts, stops and blows down the boiler automatically, utilizing a programmable time clock a time-delay relay and motorized ball valve.

\[\text{CAUTION} \] If the blowdown valve is plumbed into a blowdown tank, the boiler can be discharged at operating pressure. If the blowdown valve is not plumbed into a blowdown tank, consult with local plumbing codes regarding boiler discharge.

\text{NOTE:} The manual valves from the boiler drain and the lower float control equalization tube must be fully open for the automatic blowdown to be effective.

1. Program time clock by setting the time boiler is to turn on and off daily. (Refer to instructions in time clock insert.)
2. When the time clock turns the boiler “off” the blowdown is activated. A red pilot light over the time clock will come on and remain on while the motorized ball valve is open. The time duration the valve is open is set by an adjustable potentiometer built into the time delay board. The water level in the boiler after blowdown is complete, will be approximately at the lower gauge glass valve. (Elements are not exposed to air between operations.)
3. Boiler will automatically refill at next programmed on cycle.

Blowdown program can be overridden to allow for unscheduled blowdown or operational cycles. Refer to the time clock instruction insert.
Digital Timer - Operation Instructions

TO SET TIME & DAY OF CLOCK
1. Hold down the image of clock button ☀ for steps 2-4
2. Press the “Day” button to cycle through the days which are listed on the top line
3. Press the “h+” button to increase the current hour.
 Note: this will also change the AM/PM as it is listed to the right of the minutes.
4. Press the “m+” button to increase the current minute.

TO SET TIMER ON/OFF TIMES
* (there are 7 different programs that can be set)
5. Click the “Timer” button to go into the timer mode.
6. Program 1 ON will be the first to come up.
 This will be when the boiler turns on.
 Set the day and time the same way you set the timer in steps 2-4.
7. Hit the “Timer” button to save the entry and move onto the next setting.
8. The next setting will be Program 1 OFF.
 This will be when the boiler turns off. Once the boiler is turned off the automatic blow-down system will activate. Follow steps 2-4 to set the date and time. Hit the “Timer” button to save the settings.
9. Repeat steps 6-8 to set programs 2-7.

ON/OFF STATUS:
Pressing the image of a hand with a pointed finger button (陔) changes the current mode of the timer. If **ON** is indicated on the display the boiler is currently running and if **OFF** is indicated the boiler is off/blowing down. Once one of the programs are started the indicator will automatically turn to the **ON** position and when one of the programs ends it will automatically be set to the **OFF** position.

DAYLIGHT SAVING TIME:
The timer does not automatically adjust for daylight saving time and the time will have to be adjusted manually.

PROGRAMMED COMBINATIONS:
Switch **OFF** commands have priority over switch **ON** commands.

NOTES:
1. The timer is set according to the boiler operation. When the timer is **ON** the boiler is **ON** and the blowdown is **OFF**.
2. During programming, if no button is pressed after 30 seconds, the timer will revert back to normal operating mode.
24-Hour and 7-Day Time Switches

PROGRAMMING
For electric steam boilers equipped with Automatic Blowdown Systems ES 81600, refer to the following instructions for time clock operation and settings.

Timer settings for blowdown operation are at the discretion of the owner/operator.

The weekly program dial shows the seven days of the week and AM/PM imprints for each day.

The time switch is set by pushing the captive trippers to the outer ring position for the entire period that the load is to be turned ON, i.e., 2 hours to each tripper on the 7-day dial. When the tripper is pushed to the inside, the switch is in the OFF position.

SETTING TIME
To set the current time and day of week, turn the minute hand clockwise. Do not set the time by rotating “Outer” Dial.

Turn the minute hand clockwise until the day of the week and the time of day on the outer dial is aligned with the triangle marker on the inner dial (two o’clock).

Example for 7-day program dial Monday 10:30 AM. Turn the minute hand clockwise until Monday 10:30 AM is aligned with the triangle on the inner dial. The hour and minute hand will show exactly 10:30.

FOR MANUAL OVERRIDE
Manual override can be accomplished at the discretion of the owner/operator as follows.

3-WAY MANUAL OVERRIDE SWITCH

<table>
<thead>
<tr>
<th></th>
<th>I = permanent ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø</td>
<td>Ø = automatic</td>
</tr>
<tr>
<td>O</td>
<td>O = permanent OFF</td>
</tr>
</tbody>
</table>

IMPORTANT: It is recommended that for periodic and effective blowdown, the override switch be set in the Ø automatic setting.
Sussman Electric Steam Boilers are designed for years of trouble-free performance. To establish a good preventative maintenance program, we suggest that the facility maintenance person or engineer familiarize themselves with these simple rules.

1. Daily blowdown at pressure is essential for ideal boiler performance. Extended periods of operation may require more frequent blowdown. If the boiler is not equipped with an automatic blowdown, in order to safeguard the heating elements, it is recommended to turn both the main disconnect switch and the boiler switch to the off position before manually blowing down the boiler.

2. The sight glass should be checked frequently to assure the boiler has adequate water.

3. The sight glass should be checked daily for damage (i.e. scratches, erosion, leaks etc.) The sight glass should be replaced if damaged. (See insert.)

4. A monthly inspection should be made of the internal wiring. Open the access door and check all electrical connections for tightness. Replace any wires that show signs of damage.

NOTE: The electrical power MUST be shut off during this maintenance procedure.

5. Heating element mounting bolts should be checked and tightened to a torque of 22 ft.-lbs. If there are indications of steam leaks from an element, replace the element gasket.

6. A monthly check for leaks should be made; any loose or damaged fittings should be tightened or replaced.

7. Every four months the boiler float control should be checked for proper operation. The lower equalization column can be examined visually and manually to see if is clear and clean. If there are signs of scale or mineral deposit buildup the float control must be disassembled and cleaned. One of the lower heating elements should be removed. If scale or mineral deposits have begun to form all elements should be removed cleaned and reinstalled using new element gaskets.

8. Operating and high limit pressure control operation should be checked. Pressure controls should be removed and cleaned if necessary. Water feed supply check valves should be inspected and replaced if necessary.

9. If the boiler is equipped with an electronic auxiliary low water cut-off every four months the probe should be removed and checked for deposits. The probe should be cleaned and reinstalled.

10. Replace probe every 10 years. More frequent replacement of the probe is required if it is used in locales where significant water treatment is required.

11. Replace the auxiliary low water cut-off board every 15 years.

12. Perform low water condition test every 12 months and confirm auxiliary low water cut-off is operating as intended.

 AUXILIARY LOW WATER CUT-OFF TEST

1. To test the auxiliary low water cut-off, simulate the failure of the primary low water cutoff:

2. Turn off boiler power and control electric supplies.

3. Drain boiler.

5. Open Mercoid level control cover to access its switches and terminal blocks.

6. Turn on boiler control voltage only.

7. Verify there is voltage at the yellow wire.

8. Manually work the upper switch to disable pump.

9. Manually work the lower switch to engage the heaters.

10. Pilot light near reset button will indicate low water after 30 seconds.

11. Release the switches.

12. Open water feed supply valve.

13. Allow boiler to fill at proper level.

15. Install level control cover.
Standard Equipment

AUXILIARY LOW WATER CUT OFF
• For model SSB boilers SSB81017MR (with manual reset).

Senses water level electronically using a resistance probe. When a low water condition is detected, the contactor control voltage circuit is interrupted and the heating elements are de-energized. When water level returns to proper levels voltage is restored to the contactor coils and the elements are re-energized. For controls with a manual reset button voltage to the contactor coils is not restored until the water level has returned to proper operating levels and the reset button is pushed. Do not depress the reset button before the correct water level is achieved.

LINE PRESSURE WATER FEED SYSTEM
• For model SSB boilers PN SSB99117

Water feed system used to supply makeup water to the boiler when incoming water line pressure is 10 psig greater than the operating pressure of the boiler. Completely factory plumbed and wired; 0-100 psig range; 1/2” NPT size. Consists of strainer, solenoid valve (120V/50-60Hz), and check valve for automatic feed. For SSB boilers PN SSB99117 components are of stainless steel construction.

Optional Equipment

HIGH PRESSURE WATER FEED SYSTEM
• For model SSB12-72 PN SSB38002
• For model SSB100-180 PN SSB38020

Used to supply makeup water and to maintain constant water level when the boiler operating pressure is equal to or greater than incoming water line pressure and condensate is not returned to the boiler.

• SSB38002A – Range is 0 – 100 psig, 1/2” NPT size consisting of strainer, solenoid valve and 1/3 HP 120/1/60 motor and pump.

• SSB38020A – Range is 0 – 125 psig, 3/4” NPT size consisting of strainer solenoid valve and 1/2 HP 120/1/60 motor and pump.

These assemblies are mounted on rubber shocks and secured to a steel base mounting plate. These units require field plumbing and wiring to the boiler. SSB38002 and SSB38020 pump components are of stainless steel construction.

AUTOMATIC BLOWDOWN SYSTEM
• Extends life of boiler
• Saves labor costs
• Starts the boiler automatically every day
• Shuts down the boiler every day
• Automatically blows down the boiler every day
• Completely programmable, can skip days, different start and shutdown times, different operational durations.
• SSB81600 for all model boilers.

A stainless steel, motor driven straight-through, self-cleaning ball valve with Teflon seats handles particles and dirty fluid without the use of an up-stream strainer or other cleaning device. A timer (Standard analog time clock is set for two hour time intervals, optional digital time clock can be programmed to one minute intervals.) and electronic time delay relay control the boiler and the blowdown valve. A pilot light indicates when the blowdown valve is open. The valve shall be plumbed to a proper drain or receptacle. An automatic blowdown system can be installed on any boiler, regardless of size operating pressure or operating duty cycle.
Optional Equipment (cont.)

BLOWDOWN SEPARATORS (see page 14)
- For models SSB12-48 PN BDT-ASME36
- For models SSB60-180 PN BDT-ASME42

A separator accepts the flash steam and effluent from the boiler blowdown and reduces the temperature and pressure to insure a safe discharge of water and sludge. Steam flash and pressure are absorbed and pass harmlessly to the outside via a vent. The separator design utilizes a water seal at the outlet, which permits the operator to introduce cold water from the bottom to mix with the hot water and boiler steam in the blowdown separator. This reduces outlet temperature to a safe discharge level.

These separators require specific plumbing from the boiler blowdown valve and require connection to a cold water supply. (If the separator is less than half full of water after the boiler is blown down cold water must be added to bring the water level to the halfway mark before the next blowdown).
- 0-30 PSIG pressure gauge; 0-200F temperature gauge; water sight gauge glass and valve set assembly are included.

MULTISTAGE LOAD PROGRESSIVE SEQUENCERS

Accurate control is provided by automatic progressive sequencing in the use of energy and minimizing wear on electrical components. The sequencers are designed to apply power progressively to larger KW boilers. A factory installed pressure sensitive sequential control reacting to steam boiler pressure progressive energizes or de-energizes heating elements through power contacts. A delay between sequencer steps before start-up and between each subsequent step eliminates power surges. Each sequencer is matched and factory pre-set to boiler system requirements. Electronic progressive sequencers give accurate control of multi-stage loads of the type used in steam boilers. Features include progressive sequencing (first on- first off) that equalizes the operating time of each load. Integral solid-state light emitting diodes show active stages. Should a power interruption occur, all elements are instantly de-energized for safety. Upon resumption of power the control will re-stage the loads one at a time.

CONTROL VOLTAGE STEPDOWN TRANSFORMER
- Provides 120 Volt (220 Volt export) from main power supply. Factory wired and fused.
The Sussman Separator design incorporates a water seal at the outlet which permits the operator to introduce cold water from the bottom to mix with the hot water and boiler steam blowdown in the separator. This reduces the outlet temperature to a level that makes it safe for discharge.

Note: 1BHP is approximately 10KW.

Maximum Boiler Working Pressure: 250 psi
Maximum Blowdown Separator Pressure: 65 psi

Blowdown Separators are sized in accordance with National Board Standards

STANDARD EQUIPMENT
- 0-100 lb. Pressure Gauge
- 0-200˚ Temperature Gauge
- Water Level Gauge

Constructed in accordance with Section VII Division I ASME Boiler & Pressure Vessel Code
Specifications

<table>
<thead>
<tr>
<th>Boiler Model No.</th>
<th>KW</th>
<th>Bhp Rating</th>
<th>Lbs/Hr Steam**</th>
<th>3-Ph Volts***</th>
<th>Amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSB-12*</td>
<td>12</td>
<td>1.22</td>
<td>36.2</td>
<td>208 240 480</td>
<td>34</td>
</tr>
<tr>
<td>SBS-18*</td>
<td>18</td>
<td>1.84</td>
<td>54.2</td>
<td>208 240 480</td>
<td>50</td>
</tr>
<tr>
<td>SSB-24*</td>
<td>24</td>
<td>2.45</td>
<td>72.3</td>
<td>208 240 480</td>
<td>67</td>
</tr>
<tr>
<td>SSB-30</td>
<td>30</td>
<td>3.06</td>
<td>90.4</td>
<td>208 240 480</td>
<td>84</td>
</tr>
<tr>
<td>SSB-36</td>
<td>36</td>
<td>3.67</td>
<td>108</td>
<td>208 240 480</td>
<td>100</td>
</tr>
<tr>
<td>SSB-48</td>
<td>48</td>
<td>4.90</td>
<td>145</td>
<td>208 240 480</td>
<td>134</td>
</tr>
<tr>
<td>SSB-60</td>
<td>60</td>
<td>6.12</td>
<td>181</td>
<td>208 240 480</td>
<td>167</td>
</tr>
<tr>
<td>SSB-72</td>
<td>72</td>
<td>7.35</td>
<td>217</td>
<td>208 240 480</td>
<td>200</td>
</tr>
<tr>
<td>SSB-100</td>
<td>108</td>
<td>11.2</td>
<td>325</td>
<td>208 240 480</td>
<td>300</td>
</tr>
<tr>
<td>SSB-135</td>
<td>144</td>
<td>14.7</td>
<td>434</td>
<td>208 240 480</td>
<td>400</td>
</tr>
<tr>
<td>SSB-160</td>
<td>158</td>
<td>16.2</td>
<td>475</td>
<td>240 480</td>
<td>379</td>
</tr>
<tr>
<td>SSB-180</td>
<td>180</td>
<td>18.4</td>
<td>542</td>
<td>240 480</td>
<td>434</td>
</tr>
</tbody>
</table>

* Single phase available
** @ 212˚ F
*** Other voltage available

STEAM GAUGE PRESSURE/TEMPERATURE CHART

<table>
<thead>
<tr>
<th>Gauge Pressure PSIG</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F˚</td>
</tr>
<tr>
<td>15</td>
<td>179</td>
</tr>
<tr>
<td>10</td>
<td>192</td>
</tr>
<tr>
<td>5</td>
<td>203</td>
</tr>
<tr>
<td>0</td>
<td>212</td>
</tr>
<tr>
<td>1</td>
<td>215</td>
</tr>
<tr>
<td>3</td>
<td>221</td>
</tr>
<tr>
<td>5</td>
<td>227</td>
</tr>
<tr>
<td>9</td>
<td>237</td>
</tr>
<tr>
<td>11</td>
<td>241</td>
</tr>
<tr>
<td>15</td>
<td>250</td>
</tr>
<tr>
<td>17</td>
<td>253</td>
</tr>
<tr>
<td>19</td>
<td>257</td>
</tr>
<tr>
<td>21</td>
<td>260</td>
</tr>
<tr>
<td>23</td>
<td>264</td>
</tr>
<tr>
<td>25</td>
<td>267</td>
</tr>
<tr>
<td>27</td>
<td>270</td>
</tr>
<tr>
<td>29</td>
<td>273</td>
</tr>
<tr>
<td>31</td>
<td>275</td>
</tr>
<tr>
<td>33</td>
<td>278</td>
</tr>
<tr>
<td>35</td>
<td>281</td>
</tr>
<tr>
<td>37</td>
<td>283</td>
</tr>
<tr>
<td>39</td>
<td>286</td>
</tr>
<tr>
<td>41</td>
<td>288</td>
</tr>
<tr>
<td>43</td>
<td>290</td>
</tr>
<tr>
<td>45</td>
<td>292</td>
</tr>
<tr>
<td>47</td>
<td>295</td>
</tr>
<tr>
<td>49</td>
<td>297</td>
</tr>
<tr>
<td>51</td>
<td>299</td>
</tr>
<tr>
<td>53</td>
<td>300</td>
</tr>
<tr>
<td>55</td>
<td>303</td>
</tr>
<tr>
<td>60</td>
<td>308</td>
</tr>
<tr>
<td>65</td>
<td>312</td>
</tr>
<tr>
<td>70</td>
<td>316</td>
</tr>
<tr>
<td>75</td>
<td>320</td>
</tr>
<tr>
<td>80</td>
<td>324</td>
</tr>
<tr>
<td>85</td>
<td>327</td>
</tr>
<tr>
<td>90</td>
<td>331</td>
</tr>
<tr>
<td>95</td>
<td>335</td>
</tr>
<tr>
<td>100</td>
<td>338</td>
</tr>
</tbody>
</table>
Sizing

Use the following Table to determine KW Boiler rating when steam load and feedwater temperatures are known.

<table>
<thead>
<tr>
<th>Feed Water (°F)</th>
<th>0</th>
<th>2</th>
<th>10</th>
<th>15</th>
<th>25</th>
<th>40</th>
<th>50</th>
<th>75</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>.3347</td>
<td>.3355</td>
<td>.3375</td>
<td>.3388</td>
<td>.3406</td>
<td>.3422</td>
<td>.3431</td>
<td>.3447</td>
<td>.3458</td>
</tr>
<tr>
<td>50</td>
<td>.3318</td>
<td>.3326</td>
<td>.3345</td>
<td>.3359</td>
<td>.3376</td>
<td>.3392</td>
<td>.3401</td>
<td>.3417</td>
<td>.3429</td>
</tr>
<tr>
<td>60</td>
<td>.3288</td>
<td>.3296</td>
<td>.3316</td>
<td>.3329</td>
<td>.3347</td>
<td>.3363</td>
<td>.3372</td>
<td>.3388</td>
<td>.3400</td>
</tr>
<tr>
<td>70</td>
<td>.3259</td>
<td>.3267</td>
<td>.3287</td>
<td>.3300</td>
<td>.3318</td>
<td>.3334</td>
<td>.3343</td>
<td>.3359</td>
<td>.3370</td>
</tr>
<tr>
<td>80</td>
<td>.3229</td>
<td>.3238</td>
<td>.3257</td>
<td>.3271</td>
<td>.3288</td>
<td>.3305</td>
<td>.3313</td>
<td>.3329</td>
<td>.3341</td>
</tr>
<tr>
<td>90</td>
<td>.3200</td>
<td>.3208</td>
<td>.3228</td>
<td>.3242</td>
<td>.3259</td>
<td>.3275</td>
<td>.3284</td>
<td>.3300</td>
<td>.3312</td>
</tr>
<tr>
<td>100</td>
<td>.3171</td>
<td>.3179</td>
<td>.3199</td>
<td>.3212</td>
<td>.3229</td>
<td>.3246</td>
<td>.3255</td>
<td>.3271</td>
<td>.3283</td>
</tr>
<tr>
<td>110</td>
<td>.3142</td>
<td>.3150</td>
<td>.3170</td>
<td>.3183</td>
<td>.3200</td>
<td>.3217</td>
<td>.3225</td>
<td>.3242</td>
<td>.3253</td>
</tr>
<tr>
<td>120</td>
<td>.3112</td>
<td>.3210</td>
<td>.3140</td>
<td>.3154</td>
<td>.3171</td>
<td>.3187</td>
<td>.3196</td>
<td>.3212</td>
<td>.3224</td>
</tr>
<tr>
<td>130</td>
<td>.3083</td>
<td>.3091</td>
<td>.3111</td>
<td>.3124</td>
<td>.3142</td>
<td>.3160</td>
<td>.3167</td>
<td>.3183</td>
<td>.3195</td>
</tr>
<tr>
<td>140</td>
<td>.3054</td>
<td>.3062</td>
<td>.3082</td>
<td>.3095</td>
<td>.3113</td>
<td>.3129</td>
<td>.3137</td>
<td>.3154</td>
<td>.3165</td>
</tr>
<tr>
<td>150</td>
<td>.3025</td>
<td>.3032</td>
<td>.3052</td>
<td>.3066</td>
<td>.3083</td>
<td>.3099</td>
<td>.3108</td>
<td>.3124</td>
<td>.3136</td>
</tr>
<tr>
<td>160</td>
<td>.2995</td>
<td>.3003</td>
<td>.3029</td>
<td>.3036</td>
<td>.3054</td>
<td>.3070</td>
<td>.3079</td>
<td>.3095</td>
<td>.3107</td>
</tr>
<tr>
<td>170</td>
<td>.2966</td>
<td>.2974</td>
<td>.2994</td>
<td>.3001</td>
<td>.3025</td>
<td>.3041</td>
<td>.3050</td>
<td>.3066</td>
<td>.3077</td>
</tr>
<tr>
<td>180</td>
<td>.2937</td>
<td>.2945</td>
<td>.2964</td>
<td>.2978</td>
<td>.2995</td>
<td>.3011</td>
<td>.3020</td>
<td>.3036</td>
<td>.3048</td>
</tr>
<tr>
<td>190</td>
<td>.2907</td>
<td>.2915</td>
<td>.2935</td>
<td>.2948</td>
<td>.2966</td>
<td>.2982</td>
<td>.2981</td>
<td>.3007</td>
<td>.3019</td>
</tr>
<tr>
<td>200</td>
<td>.2878</td>
<td>.2886</td>
<td>.2906</td>
<td>.2919</td>
<td>.2937</td>
<td>.2953</td>
<td>.2962</td>
<td>.2978</td>
<td>.2989</td>
</tr>
</tbody>
</table>

Example:

Need a boiler to produce 450 lbs. steam/hr. at 75 psig with the available feedwater temperature 50° F.

From the chart above, find .3417 KW/Lb. of steam 450 lbs. steam/hr. x .3417 = 153.8 KW boiler required
Gauge Glass Installation

IMPORTANT NOTE: Read all warnings and instructions before performing installation or maintenance. Safety glasses and gloves should be worn at all times when working with or examining water gauge glass and connections. Pressure in generator to be at zero before proceeding. Improper installation or maintenance of gauge glass and connections can cause immediate or delayed breakage resulting in bodily injury and/or property damage.

1. Apply Teflon tape or pipe dope to pipe threads. Install top gauge fitting (fitting without a drain valve) into the uppermost tapping. Wrench tighten the fitting until it is snug and the glass outlet is pointing at five o'clock (about 1/8 turn from its final downward vertical position).

2. Install the bottom gauge fitting (the fitting with a drain valve) until it is snug and the glass outlet is pointing directly upward. Verify top and bottom fittings are threaded into the tappings the same number of turns (distance A = distance B).

3. Remove glass packing nut, friction washer (or packing gland, depending upon the model), and glass packing from the fittings, and place them, in the same order, on to both ends of the gauge glass. Push both packings about an inch up the glass.

4. Gently insert one end of the glass into the top gauge fitting. Keeping the glass inside the top fitting, gently rotate the top gauge fitting clockwise until vertically aligned with the bottom gauge, then insert glass into bottom fitting until glass bottoms out on the shoulder inside the bottom fitting.

5. Carefully raise glass about 1/16" and slide lower glass packing down until the glass packing contacts the lower gauge fitting. DO NOT allow the glass to remain in contact with any metal!

6. Carefully slide upper glass packing up as far as possible.

7. Hand tighten both glass packing nuts, then tighten 1/2 turn more by wrench. Tighten only enough to prevent leakage. DO NOT OVER TIGHTEN! If any leakage should occur, tighten lightly, a quarter turn at a time, checking for leakage after each turn.

WARNING Safety glasses and gloves should be worn at all times when working with or examining water gauge glass and connections.

Pressure in generator to be at zero before proceeding.

Improper installation or maintenance of gauge glass and connections can cause immediate or delayed breakage resulting in bodily injury and/or property damage.

IMPORTANT NOTE:
Read all warnings and instructions before performing installation or maintenance.
Gauge Glass Installation - Use and Care

DO NOTS
- DO NOT use glass if it contains any scratches, chips, or any other visible signs of damage.
- DO NOT reuse any tubular glass or glass packings.
- DO NOT subject gauge glass to bending or torsional stresses.
- DO NOT over tighten glass packing nuts.
- DO NOT allow glass to touch any metal parts.
- DO NOT exceed the recommended pressure of the gauge or gauge glass.
- DO NOT clean the gauge or gauge glass while pressurized or in operation.

DO'S
- DO verify proper gauge has been supplied.
- DO examine gauge glass and packings carefully for damage before installation.
- DO install protective guards and utilize automatic ball checks where necessary to help prevent injury in case of glass breakage.
- DO inspect the gauge glass daily, keep maintenance records, and conduct routine replacements.
- DO protect glass from sudden changes in temperatures such as drafts, water spray, etc.

MAINTENANCE
Examine the gauge glass regularly for any signs of clouding, scratching, erosion, or corrosion. The glass should be inspected daily until the need for replacement becomes apparent. This will help establish the routine inspection and routine replacement schedules.

CLEANING
Use commercial non-abrasive glass cleaners to keep glass clean. Do not use wire brushes or any other abrasive materials which could scratch the glass.

INSPECTION
Examine the surface of the glass for scratches, corrosion, chips, cracks, surface flaws, or nicks. To do this, shine a very bright concentrated light at an angle of about 45 degrees. A defective glass will glisten as the light strikes imperfections. Glass which appears cloudy or roughened, and will not respond to cleaning, should be replaced.

STORING
Keep gauge glass in original packaging until ready to install.
Installation, Operation & Maintenance Manual

Element Replacement

READ INSTRUCTIONS COMPLETELY BEFORE STARTING WORK

CAUTION Before installing your new elements be sure the low water cut-off and aux. low water cutoff (if supplied) is operating properly. The float chamber and lower equalizer column of the liquid level control must be completely clear of sludge or other foreign matter. Failure to do this may cause the immediate burn-out of the new elements. If the unit is probe equipped, check condition of the probes and isolator.

All elements are thoroughly checked before shipment. The manufacturer cannot be responsible for burn-outs caused by a faulty low water cut-off.

The lower equalizer column can best be examined by breaking the unions on either side and then visually and manually examining the piping with your finger or probes to see if it is clear and clean.

1. Disconnect boiler from electric power supply at main safety switch or fuse panel. Then turn boiler switch to "OFF" position.
2. Close water supply valve on incoming water supply line. Drain boiler completely of water.
3. Open boiler door to access heating element.
4. Disconnect wire (electric) leads connecting element to main power system of boiler. Again, note wire connections to facilitate re-assembly. Proceed to remove and discard (6) bolts from flange.

IMPORTANT: Note the wire connections to facilitate re-assembly (see wiring schematic). Remove and discard six (5/16"-18) bolts from flange. Do not reuse these bolts.

5. Thoroughly clean boiler flange of all foreign material. Be certain no part of old gasket remains on flange.
6. Apply "Slic-Tite" Gasket Compound (or equal) to both surfaces of new gasket supplied with replacement element. Proceed to install element flange assembly with gasket between boiler flange and element flange. In doing this, be careful to align flange holes so element wire connection terminals on element assembly are in line with previously disconnected wire leads to facilitate easy connections.

NOTE: Observe markings on element flange. Install element marking "TOP" on top.

7. Use only new element flange bolts. Tighten all (6) element flange bolts to a torque value of 22 lb-ft each (see illustration).
8. Connect all wires to the terminals. Tighten all element terminals to a torque value of 20 lb-in each (see illustration). Make sure all wires are clean and bright to assure good electrical contact.
9. Check that the wires are correctly connected to the contactor terminals and are tightened to the torque listed on the contactor. Make sure all wires are clean and bright to ensure good electrical contact.
10. Open water valve to allow water supply to reach boiler feed mechanism.
11. As boiler automatically refills, observe the new flange assembly for possible leaks. If water is noticed, the bolts must be re-tightened. Before doing this, turn the boiler off at the main fuse safety switch.
12. When boiler reaches working pressure, check flange assembly again for leaks.

CAUTION Follow maintenance instructions provided with the boiler.

Torque Values:

<table>
<thead>
<tr>
<th>Component</th>
<th>Torque Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element Flange Bolts</td>
<td>22 lb-ft</td>
</tr>
<tr>
<td>Element Terminals</td>
<td>20 lb-in</td>
</tr>
<tr>
<td>Contactor Terminals</td>
<td>tighten to torque specified on contactor</td>
</tr>
</tbody>
</table>

For Illustrative Purposes Only. Power wiring shown in approximate factory-installed location.